LCO Report

Micah Brodsky, Jeff Tyrrill

D2VS: Distributed Differencing Version System
Operational Concepts

The concept for this project is a version control system that is much simpler, more elegant, and much easier to use than current version control systems in widespread use. Like other version control systems, it is a set of software for controlling and maintaining multiple versions of files and sets of files being edited by multiple users in a team. To improve on other systems, we are reducing all data communications to instances of a serial container (a “file”) that relates a particular state of all the files in the project to a later state—it is a “difference file”. Our project will create an exact specification for the format and behavior of the difference file and any schemas it contains instead of leaving it up to the haphazard implementation that exists in some other version control software. We will also create a client that shows a graphical tree view of the versions of the file repository and how they relate to each other, instead of requiring the user to learn the intricacies of various command line parameters.

System Requirements

Our proposed project is intended for small teams working on small projects and has several advantages over existing version control systems targeted toward the same market. Ours will be easier to set up, and importantly, will not require a dedicated server application running on a computer. In some environments, this may be difficult to set up or require special approval. The proposed project will only use a centrally shared folder, which is already provided by the network file system. Access to the repository is achieved through setting up operating system permissions on a folder rather than being required to learn a new, application-specific user configuration system. The client software will allow the user to see the various changes to the central file repository in a graphical tree view. Unlike many existing pieces of software, our proposed client application has the ability to maintain copies of older versions locally, and allow the user to activate an older version without losing changes that have not yet been submitted to the central repository. The user can maintain multiple branches and switch between them without having to submit them. With existing version control systems, if two users cause a conflict at the same time, the unlucky user who does not submit first has the entire burden of fixing the conflict. Our software will allow the conflicting changes to be centrally saved side-by-side and any other user can resolve the conflicting changes at a later time.
System and Software Architecture
The basic unit of data storage and transfer between users is the difference file. By relegating all operations to this serialized container, these difference files can be passed around on a network or placed in a central folder to create a central repository without the need for an explicit “server” application, other than the networked file system itself. Each difference file will contain a hash of the view of the system in one state, a hash of the system in the new state, and a set of operations to arrive at the new state given the existing one. One slight variant of this is that a difference file may specify that it is the root of a branch. The client application will scan for all of these difference files and create a graphical tree view of the branches of the repository. New branches or changes in the repository will be made by placing a new difference file in the shared folder. Generally, difference files would not need to ever be removed from the shared folder. One important feature that makes our proposed version control system more robust than others in existence is the use of exact schemas. A difference file that begins a branch would contain an initial schema. This schema would specify the level of granularity at which differences in the repository would be said to officially “conflict” with each other, requiring human resolution. For example, it could specify that only two simultaneous changes to the same file would conflict. Or, that two different files modified in the same folder would conflict, but not in separate folders. Or, even that any two files modified separately in the entire repository would be said to be in conflict. Additionally, the schema could specify file name masks that are excluded from the repository. In the case of a conflict, meaning two difference files exist in the repository from a single source, the client application would draw a fork in the tree view. To resolve this, the client application would allow any user to apply two difference files step-by-step, one change at a time, accepting some changes and rejecting others, and also making new changes. The user could then submit this new difference with an attribute that identifies it as a merging of two separate branches, and client applications would recognize this and draw the new tree view with the branches joining back together. Also, multiple users could resolve two branches differently, and this itself would also be a branch—the tree would show two branches each splitting off into two more branches, but each branch of one merging with one branch of the other! Users on the team could communicate with each other to decide which branch they want to use. However, the graphical view in our system is intuitive and shows the user what is happening, in contrast to command-line systems. In some other systems, branches are not even allowed—this causes novice users, or users who may not be as familiar with the course of the project overall, to not be able to resolve the differences, and they have to call for assistance. With our proposed system, they could just submit their changes, the repository would branch, and a more knowledgeable user who is more easily capable of resolving the changes can do so.
Strictly, there are two separate components of our proposed project. One is the specification for the difference file format and schema. The other is the graphical client that shows the tree view and allows users to easily browse through past versions and see changes. Although we only plan to develop one client, it would be possible to create clients with extra features that rely on the same file format and are therefore compatible. It would also be possible to make clients with a different distribution paradigm—for example, using a centralized active server to process difference files instead of relying on placing all the difference files in a central folder passively, as we propose doing, or there being no centralized folder at all, but instead users emailing each other difference files.
Lifecycle Plan
Teams of people working together on computer projects rely on such software to ensure that the work of any team member is quickly integrated into the central repository so that it is accessible to all team members, and to help prevent different people from accidentally making changes to the project that conflict with each other. The most common use is programming projects consisting of many different files, many of which can often be modified independently from each other, so team members can split work amongst themselves. The version control system allows team members to see each other’s changes, and also preserves old versions of the project, so if mistakes are made, people can “back up”, or examine earlier copies to see how certain changes came into existence.
Feasibility Rationale

This is an achievable project. Virtually all operating systems use the paradigm of files on disk arranged hierarchically, so our project will use this model. The basic operations performed by our proposed software do not require any specialized operating system-specific interaction, or computation-intensive algorithms. Furthermore, it solves problems of current version control systems. Version control systems are popular among computer users and programmers, so we believe that an improved one will have a market.
